Sequences and Series

Sequence

A sequence is an ordered list of numbers (e.g., a_n); the numbers are called “elements” or “terms”. Every convergent sequence is bounded, thus an unbounded sequence is divergent.

Sequence Test Converge Notes
Squeeze Theorem \lim\limits_{n \to \infty} a_n = \lim\limits_{n \to \infty} c_n = L then \lim\limits_{n \to \infty} b_n = L a_n \le b_n \le c_n
Def 1, pg 692 \lim\limits_{n \to \infty} a_n = L  
l’Hospital’s Rule \lim\limits_{n \to \infty} \frac{f(x)}{g(x)} \Rightarrow \lim\limits_{n \to \infty} \frac{f'(x)}{g'(x)} where f(x) = numerator and g(x) = denominator
Theorem 3, pg 693 if f(n) = a_n then \lim\limits_{n \to \infty} f(x)=L  
Theorem 6, pg 694 \lim\limits_{n \to \infty} | a_n | =0 then a_n converges  
Theorem 9, pg 696 \lim\limits_{n \to \infty} r^n = \begin{cases} 0, & \text{if } -1 < r < 1 \\ 1, & \text{if } r = 1 \end{cases} Divergent for all other values of r
Theorem 12, pg 698 Every bounded (m \le a_n \le M), monotonic sequence is convergent The bounds exists for n \ge 1, also see Theorem 10 and 11

Series

A series is the sum of the terms of a sequence: \sum\limits_{n=1}^\infty a_n.

Series Test Converge Diverge Notes
Divergence N/A \lim\limits_{n\to\infty} a_n \ne 0 Doesn’t show convergence and the converse is not true
Integral if \int\limits_1^\infty f(x) dx converges if \int\limits_1^\infty f(x) dx diverges f(x) must be positive, decreasing, and continous, also f(n) = a_n \text{ for all } n
Root \lim\limits_{n\to\infty}\sqrt[n]{|a_n|} = L < 1 \lim\limits_{n\to\infty}\sqrt[n]{|a_n|} = L > 1 \text{ or } \infty inconclusive if L = 1
Ratio \lim\limits_{n\to\infty} \left| \frac{a_{n+1}}{a_n}\right| = L < 1 \lim\limits_{n\to\infty} \left| \frac{a_{n+1}}{a_n}\right| = L > 1 \text{ or } \infty inconclusive if L = 1
Direct Comparison 0 \le a_n \le b_n  \text{ for all } n and \sum\limits_{n=1}^{\infty} b_n converges 0 \le b_n \le a_n  \text{ for all } n and \sum\limits_{n=1}^{\infty} b_n diverges a_n,b_n > 0
Limit Comparison \lim\limits_{n\to\infty} \frac{a_n}{b_n} = L and \sum\limits_{n=1}^{\infty} b_n converges \lim\limits_{n\to\infty} \frac{a_n}{b_n} = L and \sum\limits_{n=1}^{\infty} b_n diverges a_n,b_n > 0 and L is a positive constant, if L is \infty or 0, then pick a different b_n
Absolute \sum\limits_{n=1}^{\infty} | a_n | = 0   Definition of absolutely convergent, the sum is independent of the order in which the terms are summed
Conditional \sum\limits_{n=1}^{\infty} | a_n | diverges but \sum\limits_{n=1}^{\infty} a_n converges   The sum is dependent of the order in which the terms are summed

Common Series

Series Test Formula Converge Diverge Notes
Alternating \sum\limits_{n=1}^\infty (-1)^{n-1} a_n 0 < a_{n+1} \le a_n \text{ for all } n and \lim\limits_{n \to \infty} a_n = 0 N/A  
Geometric \sum\limits_{n=1}^\infty ar^{n-1} |r| < 1 and converges to \frac{a}{1-r} |r| \ge 1 finite sum of the first n terms: = \frac{a(1-r^n)}{1-r}
P-Series \sum\limits_{n=1}^\infty \frac{1}{n^p} p > 1 p \le 1 cannot calculate sum
Power \sum\limits_{n=0}^\infty c_n (x-a)^n \begin{array}{l} i,  \text{converge if } x=a \\  ii,  \text{converge for all } x \\ iii,  \text{converge if } |x-a|<R \end{array}   R is the radius of convergence, you need to check the end points for convergence too. Typically use Ratio Test.
Taylor \sum\limits_{n=0}^\infty \frac{f^n (a)}{n!} (x-a)^n |x-a|<R |x-a|>R Taylor series is centered about a. Same note as power series
Maclaurin \sum\limits_{n=0}^\infty \frac{f^n (0)}{n!} (x)^n |x|<R |x|>R A Macluarin series is a Taylor series centered about 0. Same note as power series